Feedback between deglaciation, volcanism, and atmospheric CO2
نویسندگان
چکیده
منابع مشابه
Feedback between deglaciation, volcanism, and atmospheric CO2
a r t i c l e i n f o An evaluation of the historical record of volcanic eruptions shows that subaerial volcanism increases globally by two to six times above background levels between 12 ka and 7 ka, during the last deglaciation. Increased volcanism occurs in deglaciating regions. Causal mechanisms could include an increase in magma production owing to the mantle decompression caused by ablati...
متن کاملPositive feedback between global warming and atmospheric CO2 concentration inferred from past climate change
2 [1] There is good evidence that higher global temperatures will promote a rise of greenhouse gas levels, implying a positive feedback which will increase the effect of anthropogenic emissions on global temperatures. However, the magnitude of this effect predicted by the available models remains highly uncertain, due to the accumulation of uncertainties in the processes thought to be involved....
متن کاملCO2 flux from Javanese mud volcanism
Studying the quantity and origin of CO2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, usin...
متن کاملOsmium evidence for synchronicity between a rise in atmospheric oxygen and Palaeoproterozoic deglaciation.
Early Palaeoproterozoic (2.5-2.0 billion years ago) was a critical phase in Earth's history, characterized by multiple severe glaciations and a rise in atmospheric O(2) (the Great Oxidation Event). Although glaciations occurred at the time of O(2) increase, the relationship between climatic and atmospheric transitions remains poorly understood. Here we report high concentrations of the redox-se...
متن کاملCO2-forced climate and vegetation instability during Late Paleozoic deglaciation.
The late Paleozoic deglaciation is the vegetated Earth's only recorded icehouse-to-greenhouse transition, yet the climate dynamics remain enigmatic. By using the stable isotopic compositions of soil-formed minerals, fossil-plant matter, and shallow-water brachiopods, we estimated atmospheric partial pressure of carbon dioxide (pCO2) and tropical marine surface temperatures during this climate t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Earth and Planetary Science Letters
سال: 2009
ISSN: 0012-821X
DOI: 10.1016/j.epsl.2009.07.014